Tuesday, February 23, 2021


 

For SoP  Click to explore

For SoA  :  Click to explore 

For SoET – CE : Click to explore

For SoET – CO :  Click to explore

For SoET – EE :  Click to explore

For SoET – ET :  Click to explore

For SoET – ME :  Click to explore

 

 

Monday, February 22, 2021

GATE 2021 answer key to be released by 2 March at gate.iitb.ac.in; here’s how to download

 Source: http://gate.iitd.ac.in/

The exam authority will allow candidates to submit objections against the released answer keys

The Indian Institute of Technology, Bombay (IIT- Bombay) is going to release the answer key and question paper of the GATE 2021 on its official website by 2 March, 2021.

Candidates who have appeared in the Graduate Aptitude Test in Engineering 2021 are advised to visit the official site of IIT- B GATE at gate.iitb.ac.in and download the answer key.

The IIT had conducted the aptitude test on 6, 7, 13, and 14 February.

The exam authority will allow candidates to submit objections against the released answer keys. As per the report, candidates will have to submit their objections along with appropriate representation within a stipulated time period. They can raise objections from 2 to 4 March but there is a processing fee of Rs 500 for each objection raised applicable.

Follow these steps to download the GATE 2021 answer key along with the question paper:

Step 1: Visit the official site of IIT- B GATE at gate.iitb.ac.in.

Step 2: Click on the answer key download link on the homepage.

Step 3: You will be redirected to the GOAPS portal login window.

Step 4: Enter your credentials like the registration number and password and log in

Step 5: Once you have successfully logged in, a new page will appear on the screen carrying the answer key

Step 6: Go through the official answer key of GATE 2021 and download the document

Step 7: You might also take a print out of the answer key for ease

The direct link for the GATE 2021 answer key will be generated once the authority releases it on its official website.


 

IIT Madras researchers show the way for more effective drugs to treat HIV

 Source: 

https://www.business-standard.com/article/current-affairs/iit-madras-researchers-show-the-way-for-more-effective-drugs-to-treat-hiv-121021800719_1.html

 

Using molecular dynamics simulations, the research team have shown that introducing electrostatic interaction sites on potential drug molecules can enhance the efficacy of the antiviral

Indian Institute of Technology Madras (IIT-Madras) researchers are working on a new idea that can pave the way to effective drugs for treating HIV/AIDS.

Using molecular dynamics simulations, the research team have shown that introducing electrostatic interaction sites on potential drug molecules can enhance the efficacy of the antiviral drug against the HIV virus.

This research was led by Prof. Sanjib Senapati, Department of Biotechnology, IIT Madras, along with his research scholars, Mohammed Ahsan and Chinmai Pindi.

The results of their work have recently been published in the prestigious peer-review Journal of the American Chemical Society – Biochemistry.

AIDS is one of the most devastating diseases and is a major cause of death among youth in many parts of the world. Since its outbreak nearly four decades ago, tremendous efforts have been directed towards development of antiretroviral therapies that target different stages in the life cycle of the virus that causes this deadly disease.

The pressing need for better drugs to combat drug-resistant HIV strains led researchers such as Prof. Sanjib Senapati to delve into the molecular structure of the protease to identify weak sites that can offer a handle for better inhibitor development, said IIT-M.

One of the routes that drug developers work on is to attack is HIV-1 protease (HIVPR), an essential enzyme that is used by the AIDS virus for growth and maturation. Drug designers have aimed at developing efficient inhibitors of the enzyme – inhibitors are molecules that bind with the enzyme, thereby making it unavailable to the virus for growth and maturation.

Senapati said: “Current inhibitors that target HIVPR make use of the weak forces of attraction called ‘van der Waal’s forces’ to attach themselves to the protease molecule. Given that these forces are weak, the efficacy of the drug is variable and the virus will soon become resistant to them.”

Recent useful data obtained using analytical techniques such as neutron diffraction and NMR, on the molecular structure of the target HVPR enzyme, have encouraged Prof. Sanjib Senapati to re-visit the patterns of HVPR-inhibitor binding. By using state-of-art computational techniques his team has uncovered vital data that can be used for design of more efficacious drugs.

The Molecular Dynamics (MD) simulation studies conducted by IIT Madras Researchers showed the presence of a strong and asymmetrical electric charge in the active site of the HIVPR. If a drug molecule can be designed with a complementary charge, so that it can bind tightly with this active site through electrostatic attraction, it can permanently deactivate/inhibit the enzyme.

“Current drugs lack this electrostatic complementarity. This must be investigated because it is well-known that electrostatic forces between molecules are much stronger than van der Waals forces,” added Prof. Sanjib Senapati.

Thus, Senapati and his team propose that drug design strategies should embrace both electrostatics and van der Waals interactions to complement the HIVPR active site architecture. Further, the team believes that such compounds will be effective against both wild type and resistant HIV variants.

 


 

Anjuman-I-Islam's Kalsekar Technical Campus

                                           Source:THE INDIAN EXPRESS-20th February'2021

 



Tuesday, February 16, 2021

Whats'New: AntiPlagiarism Tool: TURNITIN @ AIKTC

 

Be sure to edit your research paper carefully and check for plagiarism before turning it into the class. Using plagiarism checker is a great way to assess your paraphrasing and other anti-plagiarism skills.

AIKTC Library uses the most effective and most trusted plagiarism prevention tool “TURNITIN”. Turnitin is an internet-based anti-plagiarism detection software. Turnitin's main objective is to prevent plagiarism, and engage students through originality check, grade mark, and peer mark, at promoting quality academic writing within learning Institutions. All the Theses/Dissertations/Publications and some student assignments are subjected to plagiarism check, as per the decision of the faculty concerned. 
 
Do not take the chance of not checking your research paper. Plagiarism could mean the loss of your academic degree or career. 
 
Shaheen Momin, Librarian, AIKTC

Monday, February 15, 2021